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We present a procedure for obtaining the mean density of clusters and their associated structures in a
very general type of distribution. We first consider the one-dimensional case, and then use it to develop
the procedure according to the d-dimensional case. These procedures require the probability that a ran-
domly placed body should contain no points. We show how this quantity may be evaluated for different
types of distributions. The particular case of spherical clusters in three dimensions is treated in detail.

PACS number(s): 02.50.—r, 05.40.+j

I. INTRODUCTION

The results contained in this work are relevant to a
large variety of practical problems. However, to fix
ideas, we shall consider the following problem in greater
detail: given a distribution of points, we may look for
those distinct, nonoverlapping spots where a sphere of ra-
dius r may be placed so as to contain at least n points.
Any such spot will be termed a cluster of radius 7 at level
n [richness type f (n), for a certain f, in the astronomer’s
jargon]. Our problem is to express the value of the mean
density of the clusters in terms of the probability distribu-
tion, P,(r), for the number of points within a randomly
placed sphere. Given the process generating the distribu-
tion, this last quantity may be obtained in a straightfor-
ward manner. However, the solution of our problem
poses several, rather complicated difficulties, some of
which have been treated in a series of preliminary works.
Only now can the full solution be presented.

The proper treatment of the problem of spherical clus-
ters in three dimensions, as formulated above, is one of
the most useful consequences of the general formalism
presented here. The number densities of galaxy clusters
of various richnesses are readily available cosmological
observables. Assume we have a model for the clustering
properties of galaxies, obtained either from a theory for
the formation of the large scale structure of the Universe
or from a plausible extrapolation of the low order
galaxy-galaxy correlation function. If we want to check
the model’s ability to reproduce the observed cluster den-
sities, we must use the results presented here for the
spherical clusters. More generally, whenever we consider
systems where the rate for some processes, such as con-
densations, is a strongly nonlinear function of the local
density of particles, we may use the mentioned results to
obtain the mass distribution and number density of dis-
tinct condensed objects, as we point out at the end of this
work.

We shall briefly review the questions involved in our
problem: the first step towards its solution is to define a
cluster of n points as any collection of n points contained
within the prescribed geometrical body. The density of
these clusters in a Poissonian distribution was first de-
rived by Politzer and Presskill [1], and Otto et al. [2], fol-
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lowing a slightly different approach, generalized Presskill
et al’s result to any distribution. But, given one of these
clusters of n points we may find (by slightly moving the
body defining it, so as to discard a few points while
sweeping in as many others) several clusters of n points
sharing most of their points with the first. It is then clear
that the objects perceived as distinct individual clusters
are not the clusters thus defined, but rather groups of
clusters.

The discussion of these issues and the procedure for
deriving the probability density of the relevant objects in
one-dimensional Poissonian distributions was first
presented by the author of this paper [3]. In another
work [4], the treatment corresponding to d-dimensional
Poissonian distributions was developed. The notation
and definitions introduced in this latter work are the ones
adopted here. The clusters of # points defined so that any
collection of n points is taken as distinct are termed
type-1 clusters of n points, and are represented by C).
The clusters of type-1 clusters formed by all the CJls that
share points are termed type-2 clusters of n points and
are represented by C>. These latter clusters are in a one
to one correspondence with the really distinct objects
termed “‘structures.” These are the underlying concen-
trations of points out of which the C!’s and C>’s may be
formed. From a formal point of view, note that the C’s
and the structures (of n points) are point sets, while the
C2's are sets of point sets. The structures of n points and
specified geometrical shape (determined by the body
defining the C)’s) may be defined in a precise and unam-
biguous manner as the set of all points belonging to any
of the C}’s, where k > n, that share points. However, the
concept of structure in point distributions is an essential-
ly fuzzy one. The question of whether a particular point
belongs to a given structure has an unambiguous answer
for some points, but becomes increasingly ambiguous as
we consider points that lie at an increasing distance from
the center of the structure. Under these circumstances
any precise definition of the term structure will be arbi-
trary as well as unambiguous. In some contexts it may be
expedient to use a particular, precise definition of struc-
ture, but as long as our sole interest is centered in the
mean density and correlations of the spots at which struc-
tures occur, the exact definition of structure is totally ir-
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relevant. All we need to know for this purpose is that a
structure of n points, whichever its exact definition, con-
tains at least a C}, and a single C2. So, from a practical
point of view, we may identify structures with Cks,
However, it must be remembered that the structures are
the really relevant physical objects, while the C*’s are
merely instrumental concepts.

It is interesting to note that the structures of more than
n points are all included within the structures of n points.
It would then seem that characterizing the structures by
the maximum value of k over all the C}’s included in
them might be more expedient. However, for a number
of reasons, it turns out that the former definition is more
convenient than the latter one. The properties of the
structures derived using this latter definition may be ob-
tained immediately from those pertaining to the struc-
tures as defined at present (which are cumulative with
respect to the former). The reasons for maintaining the
present definitions of structure become particularly clear
when the concept is used in the context of continuous
random fields [5]. This reference includes a detailed dis-
cussion of the concept of structure.

Reference [4] showed how to obtain the probability
density (this term is more appropriate than “mean densi-
ty”), D2, of C¥s, which is equal to the probability density
of structures of n points, from the probability density,
D}, of Cl’s. All that is required is to divide the latter by
the mean number N, of C’s in a C? (or in a structure of
n points). We also showed how N, which corresponds to
a d-dimensional problem, may be expressed in terms of N,
which corresponds to a one-dimensional problem. The
expression given there for N, which was first derived in
Ref. [3], is an approximate one. The exact expression is
given in a latter work (Ref. [6]), which approaches the
problem from a different direction than that taken in [3],
which allowed the rigorous treatment not only of the re-
lational properties (i.e., densities and correlations) of
structures in one-dimensional Poissonian distributions,
but that of their inner configuration as well. This ap-
proach has the further advantage that it may easily be ex-
tended to any point distribution. To show how this may
be done is the main goal of this paper, see Secs. II and
ITII. Section IV describes the general procedure for ob-
taining the probability for a randomly placed body to
contain n points, P,, in terms of the properties of the
physical processes generating the distribution. In this
last section two examples are considered in detail: the
case of spherical clusters, and a case concerning the
simultaneous occurrence of events, which illustrates how
the present work may be applied outside its initial con-
text. The result from spherical clusters is in itself quite
useful. So, we present it in expressions (36) and (37) in a
self-contained manner so as to make it available to
readers not interested in the general content of this work.

II. GENERAL DERIVATION OF D2
ONE-DIMENSIONAL CASE
The general expression for the probability density, D),
of CL’s has been derived by the authors of Ref. [2]. So, to
obtain the probability density of C’s we only need to
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show how to compute the mean number, N, of C)’s in a
C? (when an explicit distinction between symbols corre-
sponding to general and Poissonian distributions is ex-
pedient, the primed symbols will be associated with the
former case).

We shall first develop a treatment for the one-
dimensional distributions; we shall then see, in the follow-
ing section, how the treatment of the d-dimensional dis-
tribution may be developed by means of the former. In
the one-dimensional case, the only problem that really
needs solving is the computation of N’. In Ref. [6] the
following expression for N (Poissonian case) is derived:

D—-U=(1/N)[1-2(1—L)], (1

where D and U stand, respectively, for the probability
that the next C} to the right of a randomly chosen C,}
will be a C}_,, in which case we say that it is a down-
going C], and the probability for it to be a C),,, in
which case we say that it is an up-going C. 1—L stands
for the probability that the next C} to the right of the last
Clina C2 willresultina C} ,.

This last probability is usually negligible; it only bears
some relevance when dealing with rather common struc-
tures. To obtain expression (1) we used the fact that, in a
Poissonian distribution, over the ensemble of all the C,:’s
lying between the first and the last C’s in a C? the values
of k are symmetrically distributed around n. It is obvi-
ous, however, that this result does not hold in general. If
we consider a distribution resulting from a nonuniform
random Poissonian process, it is clear that, in the high
number density limit, the evolution of the values of k as
we move from the first to the last C! in a C2 will ap-
proach the profile of the peaks of the underlying proba-
bility density field smoothed in a scale A/ (length of the
interval defining the clusters) above a certain threshold
(related to n). So, the asymmetry of the distribution of
the values of k with respect to n is evident. However, the
mentioned symmetry is not, in fact, necessary for obtain-
ing expression (1). What is really necessary to derive (1)
is the fact that, over the ensemble of all C’s but the last
in a C2, the probability that a C! be an up-going one is
equal to the probability for it to be a down-going one,
hence equal, to a half. For those C,} ’s that come last in a
C2, the probabilities that they might be up-going or
down-going are (by definition) 1—L or L, respectively.
We could then write

U=(1/N)[N—1+(1—-L);D=(1/N)XN—1+L). ()

This expression leads immediately to expression (1). So,
for (1) to hold for any point distribution, the sole require-
ment is that over the ensemble of all but the last C)’s in a
C2, the probabilities that a C! be up-going or down-going
be equal.

This is actually the case for a large variety of distribu-
tions termed s distributions (which includes most interest-
ing cases). But, in a general s distribution, unlike the
Poissonian case, these probabilities (U,D) are not the
same over all the subensembles of the ensemble of all C’s
but the last in a C2. In particular, these probabilities
may depend on the order number of the C’s within the
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C2s. This dependence is the more pronounced the rarer
the structure. The probability of up-going C)’s is larger
that 1 for the first half of the C)’s in a C2, and smaller
than 1 for the second half. But the isotropy of the distri-
bution is enough to grant the cancellation of these
differences with respect to 1 of the probabilities that they
be up-going C’s. We may then write for N,

D—-U=(1/N)[1—-2(1—-L)]. (3)

We then see that the usefulness of expression (1) is not
limited to the particular context in which it was first de-
rived. In fact, as advanced in Ref. [6], this expression
happens to provide a simple solution for problems whose
alternative treatments may be rather complex. It may
even be used to deal with the problem of structures in
differentiable random fields, as we intend to show in a fu-
ture work. The huge simplification in the computation of
N’ implied by (3) is due to the fact that the probabilities
D, U may generally be expressed directly in terms of the
properties of the underlying physical processes. In this
respect, the somewhat complex computation of N given
in Ref. [3], which is not even exact, may be compared
with that given in Ref. [6], in which its exact value is ob-
tained immediately by means of (1).

We shall now describe the general procedure for com-
puting U,D in a one-dimensional s distribution. In these
cases the body defining the clusters is simply an interval
of length Al, and the relevant probability distribution is
that of having n points within a randomly distributed in-
terval of length A/, P, (Al).

It is easy to realize that the ratio D /U must be given
by
D(n) _ P,—(ADp(n —1)

U(n) P, (ADp(n)

rin)= 4)

where p(n) is the probability density at the extremes
(equal at both extremes since isotropy is assumed) of a
randomly placed interval of length Al containing n
points (the explicit dependence of Al is dropped in most
symbols). To obtain p(n) we present a derivation which,
in principle, is valid strictly for those distributions of
points that are generated by random Poissonian process-
es. In these cases, the probability distribution P(M /n)
for the integral, M, of the probability density over the in-
terval Al, when it constrains n points, is given by

P(M)P(n/M)

P(M/n)=—% ;
J PP (n/MIAM

(5)

Pin/my=M oM
nl

where Bayes’s rule has been used, and P (M) is the proba-
bility distribution for the value of M within a randomly
placed interval. P(n /M) is the probability that the inter-
val contains n points when the integrated probability den-
sity within it takes the value M, which is clearly given by
the above expression. We have, on the other hand, that

P,= [ "P(MP(n/M)dM . (6)

So, the mean value, M, of M within an interval contain-
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ing n points may be expressed in the form
M(n)= [ “MP(M /n)dM
0
=P, [ “P(M)MP (n/M)dM
=P,,—1f0°°P(M)(n +1)P(n +1/M)dM

=(n+1)P, P, . @)

We also have
M(n,Al +x)=[1—p(n)x][M(n,Al)+xp(n)]
+M(n,Al +x)xp(n) , (8)

where x is an arbitrarily small quantity. The first term on
the right of this expression is the probability that a ran-
domly placed interval of length Al +x containing n
points should contain no point within a distance x from
the right extreme, multiplied by the mean value of
M(n,Al+x) when this event takes place. The second
term is the probability of the complementary event multi-
plied by the corresponding mean value of M(n,Al+x).
We have for p(n)

—aMm
p(n) dAl(n’AI) . 9)
Bearing in mind that U +D =1, we find that
Ty r)+1
N'(n) —-_'r(n)—l [1—2(1—L)] . (10)

In most interesting cases 1 —L may be set to zero. This
quantity equals the probability that an interval displaced
by an amount A/ with respect to an interval containing n
points contains more than n points, plus one half of the
probability that it contains # points. For most purposes
this quantity may be approximated by

Py, (28D (2iy4’
= P(AD

It must be noted that the definition given here for 1—L
corresponds to defining the C’s as the sets of all C,)’s
whose corresponding intervals overlap (at some position
or other ); while, in other parts of this and other papers,
we define it as the set of all the C, that share points. In
principle, these definitions are not identical, but the
difference is so irrelevant that it needn’t be considered.
One or the other are used depending on whether in the
particular context under consideration it is more con-
venient to characterize the C,’s by their points or by the
position (or rather, range of possible positions) of their
corresponding intervals (or, in general, body).

From Ref. [1] it is clear that the mean number D, of
Cl’s per unit of length is given by

Dl=p(n —1)P,_,+p(n)P,

1
2 Plan. (1

=[14+r(n)]p(n)P,= (12)

S(n) ’
where S (n) is the mean length within which the interval
defining the cluster may be wiggled while it contains the
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same n points. We shall find that this quantity turns out
to be a good tool for obtaining the solution to the d-
dimensional problem.

Finally for D? we have

2 D
D, N (p(n

—1)P,_,—p(n)P,[1—2(1—L)]"!

(13)

Such as it stands, this expression is exact for any s distri-
bution. Only when expression (9) is used to obtain p(n) is
it necessary to make a further assumption on the charac-
ter of the distribution, namely, that it is the result of a
Poissonian process. However, although we do not know
how to express p(n) in terms of P,(Al) and its derivatives
(the expression in terms of the correlations is valid for
any distribution, but is rarely useful) without making that
assumption, we may use expression (9) for any distribu-
tion, provided only that p(n) [as given by (9)] is defined
for any value of n, and that the second central moment is
not less than {n ). The reason for this is that those distri-
butions for which this condition holds—which is true for
most distributions arising from natural processes—
conform to a Poissonion model.

The probability density, M jz, of those structures (j
structures) such that the maximum value of k over all the
C’s that they contain is j is immediately given by

M}=D}-D},, . (14)

The mean number of C jl’s in a j structure, N, c' , may be ob-
tained in the same manner as expression (35) in Ref. [6];
it is only necessary to change k ~! (=j /A Al) by r [see ex-
pression (4)].

N.(j)=1+r"1() . (15)
The probability distribution for N, is given by
N,
pvH=+ [1-L (16)
N, N,

III. D-DIMENSIONAL CASE

For structures in d dimensions, D,,l is obtained by di-
viding P, by the mean d-dimensional volume, AV, in
]

._,
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which the body defining the cluster may be moved while
it still contains the same set of n points. This volume
may be expressed in terms of the quantities S; [see expres-
sion (12)], with i from 1 to d, corresponding to the ith
one-dimensional problem obtained when only displace-
ments (of the body defining the clusters) along the ith de-
gree of freedom are considered (similar considerations
may be found in Refs. [4] and [S]). Note that, in general,
not all the degrees of freedom are translational. There
are usually at most three translational ones; the others
are related to the possible shapes and orientations of the
body defining the clusters. The S;’s are given by

(n)]!

S,_—'[p,-

P, [V +8V,(x)]
P,[V+8V,(x)]

, (17

x=0

= 4
pi(n)=(n+1) .

where P,(V) stands for the probability for the body in
question (with volume V) to contain n points when placed
at random, while P,(¥V +6V;) corresponds to the body
generated by the body defining the clusters when dis-
placed along the ith degree of freedom by an amount x.
We then have for D,

d j/d
-1 HS.'
1+ 2

ji=1

d

ILS:

i=1

D!=a P(V), (18

a, y; are certain geometrical coefficients. « is directly re-
lated (for regular distributions) to the coefficients
represented by the same symbol in Ref. [4] [expression
(3)). In this latter work we showed how to compute this
coefficient. A general procedure for obtaining the y,’s is
not available: only in some cases is it possible to conduct
simple computation (see Ref. [1]). But, these coefficients
are rarely relevant. For N; we have

T[1+B,@I) 2 Sla, |21
(I 1+ 3 Q,
,-I=I, ! ] d 21 1+2I' E’,
14 N (4 B-1_ agtfary Y
~B|— (1+21/) —_— Q;
d,?, 1421/ ,-EII ! [TI(1+21))]' ] 2, ]
—, | Si(n) | = P (V) 1 N
1+2I} =N/ | = ——+—
SN R |2 s |22 (19)
-
N/isthe N ’ associated with the one-dimensional problem P,(AD) ® N’i'(Tvi’ -n |
corresponding to the ith degree of freedom, which is ———=D2= |3 D;i | {1+2I/ T ’
given by (4) and (10) with p; [see (17)] in the place of p. N;Si(n) k=n
This expression is the generalization of expression (15) in (20)

Ref. [4]. The expression for 1+2I; was obtained using
the identity

which expresses the fact that D2 may be obtained either
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by following the procedure implied by expression (13), or
by dividing the probability density of C}’s, with n <k, by
the mean number of these C,g ’s, in a structure. This latter
quantity is given by [1+2I'—N'(N'—1)/2], where
1+2I'(n) has been taken—to keep the notation used in
the Poissonian case—to represent the mean number of
Cl’s (for any value of k) that may be found between the
first and the last C! (both included) in a C? in a one-
dimensional problem. To obtain this expression [in the
right-hand parentheses in (20)] we need only note that the
quantity it represents is equal to 1+2I'(n), minus the
mean number of all the C,:’s, with k <n, that may be
found between the first and the last C! in a C2. This last
quantity, in turn, depends on N' in the same manner as
(1421 —N)/2 depends on N in the one-dimensional
Poissonian case. The approximation in which
I=(N?—1)/2 has been used; when required, more accu-
rate expressions may be used (see Ref. [6]). To compute
the coefficients in (19) it is assumed that the correlations
of the points within the cluster have scales of variation
which are not much smaller than the mean distance be-
tween them. Typically, these scales are of order of the
size of the cluster, and this assumption is fully granted.
In a somewhat artificial distribution in which the points
within the cluster are ordered in a fixed array, the fact of
having a point at a certain position may actually deter-
mine the exact position of the points on the other side of
the cluster. In this case, the assumption in question does
not hold. We shall find, however, that even in cases as
extreme as this, this assumption yields reasonably good
results. But our attention will be centered on the distri-
butions for which it holds. In these cases the ;s and
the B,’s are equal to those corresponding to a Poissonian
distribution. The ();’s may be obtained by taking the
high »n limit of DX(n) for a Poissonian distribution, and
by comparing it with the expression for the probability
“density of structures in a Gaussian random field with a
white noise spectrum (see Ref. [5]). There is no simple
procedure to compute the B;’s; while the procedure for
computing B was shown in Ref. [4] [the B’s given there
must be multiplied by (13/16)? "1, since this factor was
missing in that work]. B is the most relevant coefficient
and, in most cases, the only one that is really needed.
The general procedure described in this section looks
rather cumbersome, but we shall see that when applied to
individual cases, it looks much simpler.

IV. COMPUTATION OF P, (V)

The preceding sections showed that all the quantities
relevant to our problem may be obtained from Py(¥). In
principle, to compute this quantity is a straightforward
question. However, to connect the standard procedure
with the processes generating the distribution is rather
awkward. In Refs. [2] and [7], Po(V) is expressed in
terms of integrals over correlation functions of all orders.
So, given the processes in question we shall first need to
obtain all the correlation functions in order to obtain
P,(V). But to express the correlations in terms of the
properties of the underlying processes is by no means a
simple matter. In fact, as we shall see, it is Py(¥) which
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admits a relatively direct expression in terms of the pro-
cesses mentioned; while the expression for Py(V) in terms
of the correlations may be used to derive certain proper-
ties of the latter. We shall consider distributions generat-
ed by two different types of processes. When those pro-
cesses are such that the probability density for a point to
end up at certain position is independent of the positions
of other points—depending only on the value at the
point of a certain underlying field —we say that the dis-
tribution results from a Poissonian process. There are,
on the other hand, processes whereby the probability for
a point to end up at certain position depends on the posi-
tions of other points. These processes are termed ‘“non-
Poissonian processes.”

In the Poissonian processes all the properties of the re-
sulting distribution are derived from those of the underly-
ing probability density field, p(x). In these cases, the
relevant physical problem is that of obtaining the field,
the procedure depending on the detailed nature of the
field in question (an example may be found in Ref. [8]).
What is presented here is how to derive Py(¥) from a
given field.

Py¥)= [ “e"""P(wdw ,

w=(1/m) [ px)dx, @
_ © (Aw)" —Aw
P,,(V)—fo e TP (w)dw .

The integral in the definition of w is over the body
defining the cluster. This definition has been chosen so
that w does not depend on the mean number density, 7:
it depends only on the dimensionless correlations, which
are determined by the underlying field. The expression
for P,(V) in terms of the derivatives of Py(V) with
respect to 7, which is obvious in the present context, may
be shown to be valid for any distribution (see Ref. [7]),
provided that the derivatives are carried out with the di-
mensionless correlations held fixed. Using this result the
following useful identity may easily be shown:

_ 1. k=de(t)
G(t)=Py[V,i(1—e")];{(n*) iz
where G (¢) is the generating function of the distribution
P,(V), Py(V,7i)is Py(V) as a function of 7 at fixed corre-
lations, and {n*) is the kth moment of the distribution.

The essential problem that needs solving to obtain
P,(V) is computing the probability distribution for the
values of w at a randomly chosen point, P(w). This dis-
tribution corresponds to the values of the smoothed field
(using a weighting function whose value is one, inside the
body in question, and zero on the outside), which may be
obtained immediately in some cases—e.g., when the field
is a Gaussian random one—may be quite involved in oth-
ers.

We shall now consider non-Poissonian processes. To
obtain the properties of the resulting distributions it is ex-
pedient to substitute the real processes, whereby the posi-
tion of all the points will, in general, evolve simultaneous-
ly towards their final configuration, by a process whereby
the points are placed sequentially; and where the proba-

, (22)
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bility density for a point to be placed at a given position
depends only on the position of the previously placed
ones. This substitution is merely a useful mathematical
trick. The contribution to the probability density at x;

owed to the presence of a point at x; is denoted
p(r)(r=|x;—x;|). We shall assume that
p="L [ “ptririar,

" (23)

(l/p)[p—(l/V)foVp(lxl—le)dx,dx2]<<1 .

That is, the integral to all space of the fractional excess
probability density (the mean is 7) due to the presence of
a point converges over scales much smaller than that of
the body in question. In this case, if the points are all
placed within a region of volume 2, we have for Py(¥):

N
P =TI

i=1

¥
Q+pi

(24)

The ith factor in this product is the probability that the
(i +1)th point is placed outside V. Border effects have
been neglected here. Accounting for these effects is rela-
tively simple: for example, at first order, we need only
add in (24) iA to V, where A is the mean value of the in-
tegral of p(r)/A within V for a randomly placed point
outside V. However, we shall not include these
refinements here. N is the total number of points in (.
In the large Q /V limit we have

Py(V)=exp

— | ~(14+ V/p
Vz X0 + ] (1+pr)~
(25)
a=N/Q .
When p falls to zero (25) takes its Poissonian value, e VE,
We may now express P, (V) in the form

p, =" 4" p v &)
n! "
n n n—1
=" T (v +pi) [(14pm)" Y2, (26)
n. i=0

or, in a more compact form,

(V/p +n) (Ap)"

BN =tV e+ 1)

(14pr)~ Y72t (27)

Using expression (22) we find that
((n—(n)2)=aV(1+ap) . (28)

Comparing this result with the expression for the second
order central moment in terms of the two point correla-
tion function ¢, we find

P =(1/V)foV£(le—le)dxldxz . (29)

It must be noted that the difference between Poissonian
and non-Poissonian processes concerns the processes gen-
erating the distributions and not the distributions them-
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selves. A distribution generated by a non-Poissonian pro-
cess may conform to a Poissonian model. This is general-
ly the case when the excess probability density at the
places where there are points is typically the result of the
contribution of several points, rather than being dominat-
ed by the next neighbor.

We shall now consider a clustering model which is par-
ticularly relevant in problems related to the simultaneous
occurrence of events (see Ref. [6]). In this model, the dis-
tribution is formed by uncorrelated clusters with negligi-
ble size, whose number of points, N, follows a given prob-
ability distribution P(N). In this case, the probability of
having n points within a randomly placed body of volume
V, P,(V), may be obtained by means of the generating
function of P,(V), which may easily be expressed in
terms of the generating function of P(N),

G(P,(V))=exp{—[MV —MVG(P(N))]}, 30)

P (=12
n!

G(P,(V)) >
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where G (f) stands for the generating function of f and
M is the number density of clusters.

In deriving expression(4), we assume that the correla-
tions between the points are not singular. So, the next C;
to a C! must either be a C!_, or a C,,,. When the
points are bound in arbitrarily tight clusters, as in the
model which has just been described, expression (4) must
be changed by

n P, (V)p(i)P(n —i)

= , 31
rm= 2 W) GD

where p(i) is now the probability density for clusters at
the extremes of the interval. In the models just con-
sidered p(i) may be dropped, since it does not depend on
i

As an example of the possible applications of the main
results of this work to the above model, the following
case will be considered: assume that users come to a facil-
ity at randomly chosen times. The users come in groups
whose size, N, follows the distribution (which is a
relevant distribution in the theory of avalanches):

___1__1_ N
P(N) n(i—4) NA (32)

The mean arrival rate of the groups is M, and their mean
facility use time is 7. The facility may serve n —1 users
simultaneously. The question is what is the mean time,
(t), between saturations (situations during which there is
at least one user at the queue). The answer to this ques-
tion is clearly

(¢)"'=D2=M[r(n)—1]P,(T)[1-21—L)]"", (33)

where r(n) is given by expression (31). To obtain the
probability, P,(T), of finding n users within a randomly
chosen interval of length T we use (30) and find
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In(1— 4e")
)= — —_—— 7
G(P,(T)) exp{ MT |1 (1= 4) ,
p,n="1"
n!
d" In(1— A4 + Au)
X —MT |1- LA
du”exPl T "ha-a Vo
— F(T/p'+n)_l_ A (1__A)LT+"’
I(T/p+1) n! |1—4
__In(1—4) 34
—w
(1—L) is given by
1-L= S P(T)+1/2P,(T) . (35)

i=n+1

The above example illustrates the one-dimensional prob-
lem. As an example of the d-dimensional one, we shall
now consider the case of spherical clusters in three di-
mensions, which is the issue that originally motivated the
present work. Given a three-dimensional distribution of
points, and the probability distribution, P,(r), for the
number of points within a randomly placed sphere of ra-
dius r, we have to obtain the mean density of spherical
clusters of radius r. These clusters are defined as those
nonoverlapping spots within the distribution where a
sphere of radius r may be placed so as to contain at least
n points. It is then clear that the mean density of these
clusters is given by the mean density, D,f(r), of spherical
type 2 clusters of radius r.

To obtain D2(r) we must use the general procedure de-
scribed in the preceding section. However, due to the
isotropy of the present problem, we reduce it to three
equal one-dimensional problems. That is, S; is indepen-
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dent of i and is given by
-1

Pn—l
S(n)= |[p(n —1) P +p(n) )
' (36)
(n)zfrrz(n+1)i_P"+1(r)
P 4mr? dr P,(r)
Using the coefficients given in Ref. [1], we find
372 - 372 _
DM r)=——— |L 3¥n)+3 |1—=— |L 4n)
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—  rin)+1 P,_(r)p(n—1)
'=——"—=[1-2(1—L)]; =,
N == 2Dk ==
= | Sn) | & P | N'—1
1+2I'=N'
P,(r) |2, S(i) 2

S, p are given by (36), and N’, I' are given by (10) [with
r(n) given by (4)] and (19). The coefficients have been
taken from Ref. [4] [B =107%/96 (13/16)?]. A procedure
for computing the ’s is also given there. When the
mean distance between clusters is much larger than 7,
(1—L) is negligible. For a Poissonian distribution with
mean density of points 7, (37) reduces to

|
2
Dpy= BV 0P 430137 /32)(AY +n) =21 =37 /32)AV +n) 9 |13 |" Pulr)
" 2% 0.47 10 | 16 v
(1+2I°N [1- 70

1+K

N= [ e,
— (38)

__2K o o _

m[l—w],w—[l 1/(8n)—0(n~*)]erfc X vn 1],

K=aV/n;V=4%mr’.

Expression (37) provides a powerful tool for statistical
mechanics. When nonlinear processes (i.e., condensa-
tions) take place at some high density spots within a sys-
tem, we may use (37) to obtain the mean density, M, of
those spots at any given time and the probability distribu-
tion of their masses. To this end we must first obtain the
probability, F(n,r), that a condensation of #» or more par-
ticles occurs when the n particles may be found within a

sphere of radius  (determined by the threshold local den-
sity for the onset of the processes). We then have

M=SF(n,n[D}_,(rn—DXn]. 39

F(n,r) may readily be obtained from the underlying sta-
tistical mechanics, but if we want to obtain M we cannot
bypass the use of (37).
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